EL CLIMA

miércoles, 17 de octubre de 2012

LEY DE GRAVEDAD CONSIDERACIONES

























La ley de la Gravitación Universal es una ley física clásica que describe la interacción gravitatoria entre distintos cuerpos con masa. Ésta fue presentada por Isaac Newton en su libro Philosophiae Naturalis Principia Mathematica, publicado en 1687, donde establece por primera vez una relación cuantitativa (deducida empíricamente de la observación) de la fuerza con que se atraen dos objetos con masa. Así, Newton dedujo que la fuerza con que se atraen dos cuerpos de diferente masa únicamente depende del valor de sus masas y del cuadrado de la distancia que los separa. También se observa que dicha fuerza actúa de tal forma que es como si toda la masa de cada uno de los cuerpos estuviese concentrada únicamente en su centro, es decir, es como si dichos objetos fuesen únicamente un punto, lo cual permite reducir enormemente la complejidad de las interacciones entre cuerpos complejos.
Así, con todo esto resulta que la ley de la Gravitación Universal predice que la fuerza ejercida entre dos cuerpos de masas  y  separados una distancia  es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir

donde
 es el módulo de la fuerza ejercida entre ambos cuerpos, y su dirección se encuentra en el eje que une ambos cuerpos.
 es la constante de la Gravitación Universal.
Es decir, cuanto más masivos sean los cuerpos y más cercanos se encuentren, con mayor fuerza se atraerán. El valor de esta constante de Gravitación Universal no pudo ser establecido por Newton, que únicamente dedujo la forma de la interacción gravitatoria, pero no tenía suficientes datos como para establecer cuantitativamente su valor. Únicamente dedujo que su valor debería ser muy pequeño. Sólo mucho tiempo después se desarrollaron las técnicas necesarias para calcular su valor, y aún hoy es una de las constantes universales conocidas con menor precisión. En 1798 se hizo el primer intento de medición (véase el experimento de Cavendish) y en la actualidad, con técnicas mucho más precisas se ha llegado a estos resultados:
(2)
en unidades del Sistema Internacional.
Esta ley recuerda mucho a la forma de la ley de Coulomb para las fuerzas electrostáticas, ya que ambas leyes siguen una ley de la inversa del cuadrado (es decir, la fuerza decae con el cuadrado de la distancia) y ambas son proporcionales al producto de magnitudes propias de los cuerpos (en el caso gravitatorio de sus masas y en el caso electrostáticos de su carga eléctrica).
Aunque actualmente se conocen los límites en los que dicha ley deja de tener validez (lo cual ocurre básicamente cuando nos encontramos cerca de cuerpos extremadamente masivos), en cuyo caso es necesario realizar una descripción a través de la Relatividad General enunciada por Albert Einstein en 1915, dicha ley sigue siendo ampliamente utilizada y permite describir con una extraordinaria precisión los movimientos de los cuerpos (planetas, lunas, asteroides, etc) del Sistema Solar, por lo que a grandes rasgos, para la mayor parte de las aplicaciones cotidianas sigue siendo la utilizada, debido a su mayor simplicidad frente a la Relatividad General, y a que ésta en estas situaciones no predice variaciones detectables respecto a la Gravitación Universal.Cuando el primer libro de los Principios de Newton fue expuesto a la Royal Society (la Real Academia de las Ciencias, de Inglaterra), el coetáneo Robert Hooke acusó a Newton de plagio por copiarle la idea de que la gravedad decaía como la inversa cuadrado de la distancia entre los centros de ambos cuerpos. Aunque esta controversia ha durado incluso hasta nuestros días, no hay datos claros sobre si realmente Newton conocía los trabajos de Hooke o no, ya que aunque ambos se carteaban regularmente, en ninguna de esas cartas Hooke menciona la ley de la inversa cuadrado, algo que Newton sí hizo con otros autores a los que sí agradeció1 los trabajos anteriores en los que basó sus ideas. Frente a esta proclama de Hooke de su idea de la inversa cuadrado, Newton reiteró que dicha idea en ningún caso era exclusivamente de él, sino que fueron varios autores en aquella época que ya se dieron cuenta de una dependencia de ese tipo, como reflejó en los agradecimientos de su publicación.

Cuando un cuerpo describe un movimiento circular su velocidad va cambiando constantemente de dirección, motivo por el cual decimos que tiene una aceleración, no obstante que la magnitud de la velocidad no cambie. La aceleración que sufre el cuerpo se debe a una fuerza que actúa en forma constante, a lo largo de un radio, hacia el centro del círculo, dicha fuerza recibe el nombre de fuerza centrípeta. Si esta fuerza deja de actuar, el cuerpo sale disparado en forma tangencial a la curva, siguiendo un movimiento rectilíneo uniforme como resultado de la inercia del cuerpo que tratará de seguir en movimiento.
Si se pone a girar una piedra atada a un cordel, este ejerce una fuerza centrípeta constante para jalar a la piedra acelerándola hacia el centro del círculo. La piedra ejerce sobre el cordel una fuerza centrífuga que la impulsa hacia afuera, originando una tensión en el cordel que aumentará a medida que sea mayor la velocidad con que gira la piedra. La magnitud de la fuerza centrípeta es igual a la de la fuerza centrífuga pero actúan en sentidos opuestos. Para calcular el valor de la fuerza centrípeta o la fuerza centrífuga se usa la ecuación:

Donde:
Fc= Fuerza centrípeta o centrífuga en N
m= Masa del cuerpo que gira en kg
v= Velocidad lineal del cuerpo en m/s
r= Radio de la circunferencia en m

La fuerza centrífuga que produce el movimiento de la Tierra es mayor en el ecuador que en los polos. Esto se debe a que en un punto del ecuador se mueve más rápido que uno próximo a los polos. Por tanto, cuando la Tierra da una vuelta al rededor de su eje, el punto sobre el ecuador habrá recorrido aproximadamente 40,000 km, que es el valor de la longitud de la circunferencia en el ecuador, mientras que el punto próximo a uno de los polos recorrería aproximadamente 1000 km. Debido a ello, la velocidad lineal en el ecuador será mayor que cerca de los polos y consecuentemente será mayor también su fuerza centrífuga. Como la fuerza centrífuga actúa sobre los cuerpos tratando de alejarlos del centro del giro, la fuerza centrífuga de la Tierra empuja a los cuerpos alejándolos de su centro, reduciendo el efecto de la fuerza de gravedad.
En general: un cuerpo tiene mayor peso cerca de los polos que en el ecuador, toda vez que la fuerza centrífuga que trata de separarlo de la superficie es menor, además de encontrarse más cerca del centro de la Tierra debido al achatamiento de sus polos.

Como se ha mencionado en el apartado histórico, esta ley permite recuperar y explicar la Tercera Ley de Kepler, que muestra de acuerdo a las observaciones que los planetas que se encuentran más alejados del Sol tardan más tiempo en dar una vuelta alrededor de éste. Además de esto, con dicha ley y usando las leyes de Newton se describe perfectamente tanto el movimiento planetario del Sistema Solar como el movimiento de los satélites (lunas) o sondas enviadas desde la Tierra. Por ello, esta ley estuvo considerada como una ley fundamental por más de 200 años, y aún hoy sigue estando vigente para la mayoría de los cálculos necesarios que atañen a la gravedad.
Uno de los hechos que muestran su precisión es que al analizar las órbitas de los planetas conocidos en torno a 1800 (en donde quedaban por descubrir Neptuno y Plutón), se observaban irregularidades en torno a la órbita de Urano principalmente, y de Saturno y Júpiter en menor medida, respecto a lo que predecía la ley de Newton (junto con las leyes de Kepler). Por esta razón, algunos astrónomos supusieron que dichas irregularidades eran debidas a la existencia de otro planeta más externo, alejado, que todavía no había sido descubierto. Así, tanto Adams como Le Verrier (de forma independiente) calcularon matemáticamente dónde debería encontrarse dicho planeta desconocido para poder explicar dichas irregularidades. Neptuno fue descubierto al poco tiempo por el astrónomo Galle, el 23 de septiembre de 1846, siguiendo sus indicaciones y encontrándolo a menos de un grado de distancia de la posición predicha.

No hay comentarios:

Publicar un comentario